Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Electron. j. biotechnol ; 41: 72-80, sept. 2019. ilus, tab, graf
Article in English | LILACS | ID: biblio-1087172

ABSTRACT

Background: Microbial community analysis of electronic waste (e-waste)-polluted environments is of interest to understand the effect of toxic e-waste pollutants on the soil microbial community and to evaluate novel microorganisms resisting the toxic environment. The present study aims to investigate the bacterial community structure in soils contaminated with e-waste from various sites of Loni and Mandoli (National Capital Region (NCR), India) where e-waste dumping and recycling activities are being carried out for many years. Results: Interferences to soil metagenomic DNA extraction and PCR amplification were observed because of the presence of inhibiting components derived from circuit boards. Whole-metagenome sequencing on the Illumina MiSeq platform showed that the most abundant phyla were Proteobacteria and Firmicutes. Deltaproteobacteria and Betaproteobacteria were the most common classes under Proteobacteria. Denaturing gradient gel electrophoresis (DGGE) analysis of the bacterial 16S rRNA gene showed that e-waste contamination altered the soil bacterial composition and diversity. There was a decrease in the number of predominant bacterial groups like Proteobacteria and Firmicutes but emergence of Actinobacteria in the contaminated soil samples. Conclusions: This is the first report describing the bacterial community structure of composite soil samples of ewaste-contaminated sites of Loni and Mandoli, Delhi NCR, India. The findings indicate that novel bacteria with potential bioremediating properties may be present in the e-waste-contaminated sites and hence need to be evaluated further.


Subject(s)
Soil Microbiology , Bacteria/isolation & purification , Bacteria/genetics , Electronic Waste/analysis , Soil Pollutants , Polymerase Chain Reaction , Metals, Heavy , Proteobacteria/isolation & purification , Metagenomics , Denaturing Gradient Gel Electrophoresis , Microbiota , Firmicutes/isolation & purification , India
2.
Rev. argent. microbiol ; 51(3): 191-200, set. 2019. ilus, graf, tab
Article in English | LILACS | ID: biblio-1041824

ABSTRACT

Diversity and abundance of the denitrifying genes nirK, nirS and nosZ were investigated in cow manure compost using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and real-time quantitative PCR (qPCR), respectively. These three genes were detected in all the stages of the composting process. Phylogenetic analysis showed that the nirK gene was closely related to Rhizobiales, Burkholderiales, the nirS gene was closely related to Pseudomonadales and Burkholderiales, and the nosZ gene was closely related to Rhodospirillales, Rhizobiales, Pseudomonadales, and Alteromonadales. qPCR results showed that the abundance of these three genes (nirK, nirS and nosZ) reached the peak value in the late thermophilic stage of composting and abundance of the nirK gene was higher than that of the nosZ gene and the nirS gene. Redundancy analysis (RDA) showed that the diversity of the nirK and nirS genes was significantly correlated with ammonium (p < 0.05), the diversity of the nosZ gene was significantly correlated with pH (p < 0.05) and the abundance of the nirK nirS and nosZ genes was significantly correlated with temperature (p< 0.05).


La diversidad y la abundancia de los genes desnitrificadores nirK, nirS, nosZ en el compost de estiércol de vaca se investigaron por medio de la reacción en cadena de la polimerasa seguida de electroforesis en gel con gradiente de desnaturalización (PCR-DGGE) y por PCR cuantitativa (qPCR) en tiempo real, respectivamente. Estos 3 genes fueron detectados durante todas las fases del compostaje. El análisis filogenético mostró estrecha relación del gen nirK con Rhizobiales y Burkholderiales, del gen nirS con Pseudomonadales y Burkholderiales y del gen nosZ con Rhodospirillales, Rhizobiales, Pseudomonadales y Alteromonadales. Los resultados de la qPCR mostraron que la abundancia de los genes nirK, nirSy nosZ alcanzó el valor máximo en la fase termofílica tardía del compostaje, y que la abundancia del gen nirK era más elevada que los de los genes nosZ y nirS. El análisis de redundancia (RDA) mostró que la diversidad de los genes nirK y nirS estaba significativamente correlacionada con la concentración de amonio (p<0,05), mientras que la del gen nosZ estaba significativamente correlacionada con el pH (p<0,05). También mostró que la abundancia de los genes nirK, nirS y nosZ estaba significativamente correlacionada con la temperatura (p<0,05).


Subject(s)
Animals , Cattle , Soil Microbiology , Composting , Denitrification/genetics , Genes, Bacterial , Phylogeny , Temperature , Biodiversity , Denaturing Gradient Gel Electrophoresis , Real-Time Polymerase Chain Reaction , Ammonium Compounds/analysis , Hydrogen-Ion Concentration , Manure/microbiology
3.
Braz. j. microbiol ; 49(2): 240-247, Apr.-June 2018. tab, graf
Article in English | LILACS | ID: biblio-889244

ABSTRACT

Abstract Arbuscular mycorrhizae (AM) fungi play a crucial role in the growth of soybean; however, the planting system employed is thought to have an effect on AM fungal communities in the rhizosphere. This study was performed to explore the influence of continuous soybean cropping on the diversity of Arbuscular mycorrhizal (AM) fungi, and to identify the dominant AM fungus during the seedling stage. Three soybean cultivars were planted under two and three years continuous cropping, respectively. The diversity of AM fungi in the rhizosphere soil at the seedling stage was subsequently analyzed using polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE). The results showed that an increase in cropping years improved the colonization rate of AM in all three soybean cultivars. Moreover, the dominant species were found to be Funneliformis mosseae and Glomus species. The results of cluster analysis further confirmed that the number of years of continuous cropping significantly affected the composition of rhizospheric AM fungal communities in different soybean cultivars.


Subject(s)
Soil Microbiology , Soybeans/growth & development , Mycorrhizae/isolation & purification , Mycorrhizae/classification , Seedlings/growth & development , Biodiversity , Rhizosphere , Time Factors , Cluster Analysis , Polymerase Chain Reaction , Mycorrhizae/genetics , Denaturing Gradient Gel Electrophoresis
4.
Electron. j. biotechnol ; 31: 34-43, Jan. 2018. ilus, tab, graf
Article in English | LILACS | ID: biblio-1022040

ABSTRACT

Background: Microbial Fuel Cell (MFC) technology is used in various applications such as wastewater treatment with the production of electrical energy. The objective of this study was to estimate the biodepuration of oils and fats, the elimination of blue dye brl and bioelectro-characterization in MFCs with Chlorella vulgaris and bacterial community. Results: The operation of MFCs at 32 d showed an increase in bioelectrogenic activity (from 23.17 to 327.67 mW/m2 ) and in the potential (from 200 to 954 mV), with biodepuration of fats and oils (95%) in the microalgal cathode, and a removal of the chemical oxygen demand COD (anode, 71%, cathode, 78.6%) and the blue dye brl (73%) at the anode, here biofilms were formed by the bacterial community consisting of Actinobacteria and Deltaproteobacteria. Conclusions: These findings suggest that MFCs with C. vulgaris and bacterial community have a simultaneous efficiency in the production of bioelectricity and bioremediation processes, becoming an important source of bioenergy in the future.


Subject(s)
Bacteria/metabolism , Bioelectric Energy Sources/microbiology , Water Purification/methods , Chlorella vulgaris/metabolism , Bacteria/chemistry , Biofilms , Chlorella vulgaris/chemistry , Electricity , Electrodes , Microalgae , Denaturing Gradient Gel Electrophoresis , Wastewater
5.
Braz. j. microbiol ; 48(2): 246-250, April.-June 2017. tab, graf
Article in English | LILACS | ID: biblio-839375

ABSTRACT

Abstract Shenqu is a fermented product that is widely used in traditional Chinese medicine (TCM) to treat indigestion; however, the microbial strains in the fermentation process are still unknown. The aim of this study was to investigate microbial diversity in Shenqu using different fermentation time periods. DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) profiles indicated that a strain of Pediococcus acidilactici (band 9) is the predominant bacteria during fermentation and that the predominant fungi were uncultured Rhizopus, Aspergillus oryzae, and Rhizopus oryzae. In addition, pathogenic bacteria, such as Enterobacter cloacae, Klebsiella oxytoca, Erwinia billingiae, and Pantoea vagan were detected in Shenqu. DGGE analysis showed that bacterial and fungal diversity declined over the course of fermentation. This determination of the predominant bacterial and fungal strains responsible for fermentation may contribute to further Shenqu research, such as optimization of the fermentation process.


Subject(s)
Bacteria/classification , Plant Extracts/metabolism , Polymerase Chain Reaction , Denaturing Gradient Gel Electrophoresis , Biota , Fungi/classification , Bacteria/genetics , Fermentation , Fungi/genetics
6.
Braz. j. med. biol. res ; 50(4): e5997, 2017. graf
Article in English | LILACS | ID: biblio-839277

ABSTRACT

Amebiasis is one of the twenty major causes of disease in Mexico; however, the diagnosis is difficult due to limitations of conventional microscopy-based techniques. In this study, we analyzed stool samples using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) to differentiate between Entamoeba histolytica (pathogenic) and E. dispar (non-pathogenic). The target for the PCR amplification was a small region (228 bp) of the adh112 gene selected to increase the sensitivity of the test. The study involved 62 stool samples that were collected from individuals with complaints of gastrointestinal discomfort. Of the 62 samples, 10 (16.1%) were positive for E. histolytica while 52 (83.9%) were negative. No sample was positive for E. dispar. These results were validated by nested PCR-RFLP (restriction fragment length polymorphism) and suggest that PCR-DGGE is a promising tool to differentiate among Entamoeba infections, contributing to determine the specific treatment for patients infected with E. histolytica, and therefore, avoiding unnecessary treatment of patients infected with the non-pathogenic E. dispar.


Subject(s)
Humans , Denaturing Gradient Gel Electrophoresis/methods , Entamoeba histolytica/genetics , Entamoeba histolytica/isolation & purification , Entamoeba/genetics , Entamoeba/isolation & purification , Polymerase Chain Reaction/methods , DNA, Protozoan/genetics , Entamoebiasis/parasitology , Polymorphism, Restriction Fragment Length , Reproducibility of Results
7.
Chinese Journal of Contemporary Pediatrics ; (12): 331-336, 2017.
Article in Chinese | WPRIM | ID: wpr-351350

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the composition of bacteria in the stools of infants and the colonization of intestinal microbiota during infancy.</p><p><b>METHODS</b>Fresh stools were collected from 15 healthy infants at 0, 2, 4, 7, 10, 14, and 28 days and 3, 6, and 12 months after birth. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was used to analyze the composition of intestinal microbiota, perform sequencing of dominant bacteria, and to analyze the changes in the composition of intestinal microbiota during infancy.</p><p><b>RESULTS</b>DGGE fingerprint showed that the composition of intestinal microbiota during infancy changed significantly over time after birth. The cloning and sequencing results indicated that Proteobacteria colonized the earliest, mainly the obligate aerobes Enterobacter and Pseudomonas, followed by the obligate anaerobes (Clostridium hathewayi and Veillonella parvula) and the facultative anaerobe Clostridium ramosum in Firmicutes, and Verrucomicrobia. Actinobacteria colonized the latest, mainly Bifidobacterium, and gradually became dominant bacteria.</p><p><b>CONCLUSIONS</b>During infancy, obligate aerobes colonize the intestinal tract the earliest, followed by obligate anaerobes and facultative anaerobes. Proteobacteria colonizes the earliest, followed by Firmicutes and Verrucomicrobia, and Actinobacteria, mainly Bifidobacterium, colonizes the latest.</p>


Subject(s)
Female , Humans , Infant , Male , Denaturing Gradient Gel Electrophoresis , Methods , Feces , Microbiology , Gastrointestinal Microbiome , Polymerase Chain Reaction , Methods
8.
Rev. biol. trop ; 64(1): 213-220, ene.-mar. 2016. tab, ilus
Article in English | LILACS | ID: biblio-843272

ABSTRACT

AbstractRhizosphere microbial communities are important for phytoremediation, plant nutrition, health and metabolism. Many factors, including plant species, pH and nutritional factors influence rhizosphere microbiology. In this study, we analysed the effects of different forms of nitrogen on the structures of rhizosphere microbial communities of E. crassipes. Using a conventional culture method with special media, bacteria, actinobacteria and molds were cultured. We found that the numbers of bacteria were largely similar across the three culture conditions, while the numbers of actinobacteria and molds from the rhizosphere of E. crassipes cultured in NH4Cl solution were two orders of magnitude higher than those from the rhizospheres of plants cultured in distilled water and KNO3 solution. Using a culture-independent method of polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) of 16S rDNA, we found that the form of nitrogen could influence the components of the rhizosphere microbial community. Pseudoxanthomonas, Enterobacter and Citrobacter were present in all of the samples cultured under the three different experimental conditions. The genus Reyranella was found only in samples cultured in KNO3 solution; Acinetobacter and Streptomyces were unique to samples cultured in NH4Cl solution, and Pseudomonas, Pseudacidovorax and Methylosinus were found only in samples cultured in distilled water. Pseudoxanthomonas and Acidovorax were the dominant genera in the rhizosphere microbial community of E. crassipes cultured in KNO3 solution, while Novosphingobium was the dominant genus in the sample cultured in a nitrogen-deficient medium. Our results provide a theoretical foundation for using E. crassipes as a phytoremediation plant and controlling the widespread distribution of E. crassipes around the world using principles of nutrient metabolism.


ResumenComunidades microbianas de la rizósfera son importantes para la fitorremediación, nutrición vegetal, salud y metabolismo. Muchos factores, incluyendo la especie de planta, el pH y los factores nutricionales influyen en la microbiología de la rizósfera. En este estudio, se analizaron los efectos de las diferentes formas del nitrógeno en la estructura de las comunidades microbianas de la rizósfera de E. crassipes. Mediante métodos de cultivo convencional con medios especiales se cultivaron: bacterias, actinobacterias y mohos. Se encontró que el número de bacterias era en gran parte similar a través de las tres condiciones de cultivo, mientras que el número de actinobacterias y mohos de la rizósfera de E. crassipes cultivadas en solución de NH4Cl era dos órdenes de magnitud superior a los de las rizósferas de plantas cultivadas en agua destilada y solución de KNO3. Utilizando un método de cultivo independiente de electroforesis en gel con gradiente de desnaturalización (PCR-DGGE) del ADNr 16S, se encontró que la forma de nitrógeno podría influir en los componentes de la comunidad microbiana de la rizósfera. Pseudoxanthomonas, Enterobacter y Citrobacter estaban presentes en todas las muestras cultivadas en las tres condiciones experimentales. El género Reyranella se encontró sólo en muestras cultivadas en solución de KNO3; Acinetobacter y Streptomyces eran las únicas muestras cultivadas en solución de NH4Cl, y Pseudomonas, Pseudacidovorax y Methylosinus se encontraron sólo en muestras cultivadas en agua destilada. Pseudoxanthomonas y Acidovorax eran los géneros dominantes en la comunidad microbiana de la rizósfera de E. crassipes cultivadas en solución de KNO3, mientras que Novos phingobium fue el género dominante en la muestra cultivada en un medio deficiente de nitrógeno. Nuestros resultados proporcionan una base teórica para el uso de E. crassipes como planta fitorremediadora y para controlar la distribución generalizada de E. crassipes en todo el mundo a través de los principios del metabolismo de nutrientes.


Subject(s)
Soil Microbiology , Bacteria/drug effects , Eichhornia/microbiology , Rhizosphere , Fungi/drug effects , Nitrogen/pharmacology , Polymerase Chain Reaction , Actinobacteria/drug effects , Denaturing Gradient Gel Electrophoresis
9.
Malaysian Journal of Microbiology ; : 1-14, 2016.
Article in English | WPRIM | ID: wpr-626858

ABSTRACT

Aims: It has been hypothesized that root exudates can be a nutritional factor influencing the bacterial community structure as well as the occurrence of prototrophs and auxotrophs in rhizospheres. The present study was performed to examine the community structures of total bacterial DNA, cultivable bacteria and prototrophs in 3 soil samples with different levels of abundance of root exudates. Methodology and results: Denaturing gradient gel electrophoresis (DGGE) was performed to examine the community structures of total bacterial DNA, cultivable bacteria and prototrophs in 3 soil samples including bulk soil, rhizosphere of a single plant species and rhizosphere of multiple plant species. For clustering analysis, a dendrogram generated from the DGGE patterns revealed the different bacterial community structures in these soil samples. Both rhizospheres claded together, separating from bulk soil. The DGGE patterns of cultivable bacteria showed particular fingerprints corresponding to kinds of media and soil samples. Nutrient agar (NA) medium, isolation medium for prototroph (IMP) and IMP supplemented with soil extracts were used for bacterial cultivations. Prototrophs were isolated and examined by random amplified polymorphic DNA (RAPD) and 16S rRNA gene sequence analysis. The genetic diversity of prototrophs in 3 soil samples was similar (approximately 5% to 10% similarities) and most of them (13 of 28 strains) were members of Pseudomonas with 97% to 100% identities. Conclusion, significance, and impact of study: The present study provides a strong evidence of the influence of root exudates and plant species on bacterial community structures.


Subject(s)
Denaturing Gradient Gel Electrophoresis
10.
The Korean Journal of Physiology and Pharmacology ; : 319-325, 2015.
Article in English | WPRIM | ID: wpr-727367

ABSTRACT

Among solute carrier proteins, the organic anion transporters (OATs) play an important role for the elimination or reabsorption of endogenous and exogenous negatively charged anionic compounds. Among OATs, SLC22A9 (hOAT7) transports estrone sulfate with high affinity. The net decrease of estrogen, especially in post-menopausal women induces rapid bone loss. The present study was performed to search the SNP within exon regions of SLC22A9 in Korean females with osteoporosis. Fifty healthy controls and 50 osteoporosis patients were screened for the genetic polymorphism in the coding region of SLC22A9 using GC-clamped PCR and denaturing gradient gel electrophoresis (DGGE). Six SNPs were found on the SLC22A9 gene from Korean women with/without osteoporosis. The SNPs were located as follows: two SNPs in the osteoporosis group (A645G and T1277C), three SNPs in the control group (G1449T, C1467T and C1487T) and one SNP in both the osteoporosis and control groups (G767A). The G767A, T1277C and C1487T SNPs result in an amino acid substitution, from synonymous vs nonsynonymous substitution arginine to glutamine (R256Q), phenylalanine to serine (F426S) and proline to leucine (P496L), respectively. The Km values and Vmax of the wild type, R256Q, P496L and F426S were 8.84, 8.87, 9.83 and 12.74 microM, and 1.97, 1.96, 2.06 and 1.55 pmol/oocyte/h, respectively. The present study demonstrates that the SLC22A9 variant F426S is causing inter-individual variation that is leading to the differences in transport of the steroid sulfate conjugate (estrone sulfate) and, therefore this could be used as a marker for certain disease including osteoporosis.


Subject(s)
Female , Humans , Amino Acid Substitution , Arginine , Avena , Carrier Proteins , Clinical Coding , Denaturing Gradient Gel Electrophoresis , Estrogens , Estrone , Exons , Glutamine , Leucine , Organic Anion Transporters , Osteoporosis , Phenylalanine , Polymerase Chain Reaction , Polymorphism, Genetic , Polymorphism, Single Nucleotide , Proline , Serine
11.
China Journal of Chinese Materia Medica ; (24): 2800-2806, 2015.
Article in Chinese | WPRIM | ID: wpr-337887

ABSTRACT

The aim of this study was to comprehensively investigate the correlations between foliar fungal endophyte communities and effective components accumulations in Salvia miltiorrhiza. Foliar samples of S. miltiorrhiza were collected in 5 different areas. Their fungal endophyte communities and effective component contents were determined by denaturing gradient gel electrophoresis (DGGE) and high performance liquid chromatography (HPLC), respectively. The results showed that, for characteristics of foliar fungal endophyte communities and effective component contents, there were both similarities and differences among the five samples. Correlation analysis of DGGEs' band and 24 effective components revealed a significant correlations (P < 0.01). For examples, 4 bands (15, 18, 23 and 26) were all significantly correlated with the accumulations of caffeic acid, salvianolic acid B, salvianolic acid C and dihydrotanshinone I.


Subject(s)
Chromatography, High Pressure Liquid , Cluster Analysis , Denaturing Gradient Gel Electrophoresis , Endophytes , Chemistry , Fungi , Chemistry , Salvia miltiorrhiza , Chemistry , Microbiology
12.
China Journal of Chinese Materia Medica ; (24): 3147-3151, 2015.
Article in Chinese | WPRIM | ID: wpr-304842

ABSTRACT

In order to reveal the cause of disease occurred in the process of Coptis chinensis growth, this paper studied the bacterial species diversity index of different aged rhizospheric and non-rhizospheric soil planting normal or sick C. chinensis by using PCR-DGGE technique. The representative DGGE bands were chosen to be cloned, and sequenced, the phylogeny were constructed. The results showed that the bacterial communities were very different between the normal and diseased soil samples of C. chinensis, and the diversity index (H) of diseased soil samples were higher than that of normal soil samples. Sequencing analysis of representative cloned DGGE bands showed that the unculturable bacteria were the dominant groups, and bacteria belonged to genus Bacillus, Acidovorax, Acinetobacter, uncultured Kluyvera, and uncultured Comamonas were also existing, but the reported plant pathogenic bacteria were not found in the C. chinensis planting soil. The density and brightness of clone band d in diseased soil samples was higher than that in normal soil sample, and sequencing analysis showed that it belonged to genus Acidovorax. Obviously, during the process of C. chinensis growth, the rhizospheric bacteria population changed, and the quantity of bacteria belong Acidovorax increased, which probably resulted in the disease occurred during C. chinensis growth.


Subject(s)
Bacteria , Classification , Genetics , Biodiversity , Coptis , Microbiology , Denaturing Gradient Gel Electrophoresis , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , Rhizosphere , Soil Microbiology
13.
China Journal of Chinese Materia Medica ; (24): 3053-3058, 2015.
Article in Chinese | WPRIM | ID: wpr-284800

ABSTRACT

This study aims to analyze and compare the effect of cell wall-broken decoction pieces, conventional decoction pieces and conventional powder of Rhodiolae Crenulatae Radix et Rhizoma on the intestinal flora of normal mice. The conventional bacterial culture and PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) were adopted for the mice after the oral administration for 14 days. According to the bacterial culture results, the 1/8 dose cell wall-broken decoction pieces group showed fewer Enterococcus and Escherichia coli bacillus but more Lactobacillus and Bifidobacterium than the conventional decoction pieces group and the traditional powder group (P <0.05). Meanwhile, on the basis of the PCR-DGGE results, the 1/8 dose cell wall-broken decoction pieces group revealed the highest Shannon-Wiener index (H) and species richness (S) among the seven groups, with extremely significant differences compared with the normal group (P <0.01), significant differences compared with the conventional decoction pieces group and the conventional powder group (P <0.05) and a high intra-group similarity. In conclusion, the long-term intake of 1/8 dose Rhodiolae Crenulatae Radix et Rhizoma cell wall-broken decoction pieces showed a certain effect in regulating intestinal tract by promoting the growth of Lactobacillus and Bifidobacterium. Furthermore, the intestinal flora community will become more stable.


Subject(s)
Animals , Mice , Bifidobacterium , Genetics , Cell Wall , Denaturing Gradient Gel Electrophoresis , Intestines , Microbiology , Lactobacillus , Genetics , Mice, Inbred C57BL , Polymerase Chain Reaction , Rhizome , Rhodiola
14.
West China Journal of Stomatology ; (6): 602-606, 2015.
Article in Chinese | WPRIM | ID: wpr-317755

ABSTRACT

<p><b>OBJECTIVE</b>To analyze the differences between the bacterial diversities in the saliva of caries-free and caries-susceptible adolescents through polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE).</p><p><b>METHODS</b>Twenty adolescent subjects aged 12-18 years were recruited and subdivided into two groups: caries-free adolescents (n = 10) and caries-susceptible adolescents (n = 10). Saliva samples were collected. Total DNA was isolated directly from each sample. A portion of the 16S rRNA gene locus was PCR-amplified by using universal primers. Microbial diversity was analyzed through PCR-DGGE.</p><p><b>RESULTS</b>Analyzing the DGGE profile, we found that the composition of the saliva microbiome exhibited great intra-individual differences; the average band numbers of the caries-free adolescent group and the caries-susceptible adolescent group were 32.5 ± 3.7 and 27.3 ± 3.4, respectively. The differences between the groups were statistically significant (P = 0.008). Shannon-Wiener's indexes of the caries-susceptible adolescent group and the caries-free adolescent group were 2.5 ± 0.2 and 2.6 ± 0.2, respectively, but the differences between the groups were not significant (P = 0.405). Clustering analysis results suggested that most of the samples in the same group clustered together; this observation showed a high community structure similarity.</p><p><b>CONCLUSION</b>The microbial diversity and complexity of bacteria in saliva are significantly higher in caries-free adolescents than in caries-susceptible adolescents. During caries development, bacterial diversity in the saliva likely decreases.</p>


Subject(s)
Adolescent , Child , Humans , Bacteria , DNA, Bacterial , Denaturing Gradient Gel Electrophoresis , Dental Caries , Microbiology , Dental Caries Susceptibility , Microbiota , Mouth , Microbiology , Polymerase Chain Reaction , RNA, Ribosomal, 16S , Saliva , Microbiology
15.
Braz. j. microbiol ; 45(4): 1153-1160, Oct.-Dec. 2014. ilus, tab
Article in English | LILACS | ID: lil-741264

ABSTRACT

The present work aimed to investigate the microbial dynamics during the anaerobic treatment of the azo dye blue HRFL in bench scale upflow anaerobic sludge bed (UASB) reactor operated at ambient temperature. Sludge samples were collected under distinct operational phases, when the reactor were stable (low variation of color removal), to assess the effect of glucose and yeast extract as source of carbon and redox mediators, respectively. Reactors performance was evaluated based on COD (chemical oxygen demand) and color removal. The microbial dynamics were investigated by PCR-DGGE (Polimerase Chain Reaction - Denaturing Gradient of Gel Electrophoresis) technique by comparing the 16S rDNA profiles among samples. The results suggest that the composition of microorganisms changed from the beginning to the end of the reactor operation, probably in response to the presence of azo dye and/or its degradation byproducts. Despite the highest efficiency of color removal was observed in the presence of 500 mg/L of yeast extract (up to 93%), there were no differences regarding the microbial profiles that could indicate a microbial selection by the yeast extract addition. On the other hand Methosarcina barkeri was detected only in the end of operation when the best efficiencies on color removal occurred. Nevertheless the biomass selection observed in the last stages of UASB operation is probably a result of the washout of the sludge in response of accumulation of aromatic amines which led to tolerant and very active biomass that contributed to high efficiencies on color removal.


Subject(s)
Azo Compounds/metabolism , Biota , Biological Oxygen Demand Analysis , Biotransformation , Bioreactors/microbiology , Cluster Analysis , Color , Denaturing Gradient Gel Electrophoresis , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , /genetics , Sequence Analysis, DNA , Sewage/microbiology
16.
Rev. argent. microbiol ; 46(4): 358-362, dic. 2014.
Article in English | LILACS | ID: biblio-1008641

ABSTRACT

La Laguna Azul es un ambiente oligotrófi co localizado a 4560 m de altura y sometido a elevados niveles de radiación solar. La composición de su comunidad bacterioplanctónica fue analizada empleando la técnica de electroforesis en gradiente desnaturalizante y se investigó el impacto de la radiación ultravioleta cuantifi cando los dímeros de pirimidina (CPD). Además, se expusieron simultáneamente cultivos puros de Acinetobacter johnsonii A2 y Rhodococcus sp. A5 para estudiar la acumulación de CPD. El análisis de los geles mostró siete secuencias pertenecientes a Alpha-proteobacteria (1 banda), Beta-proteobacteria (1 banda), Bacteroidetes (2 bandas), Actinobacteria (1 banda) y Firmicutes (1 banda). A lo largo del día se observaron cambios mínimos en la composición de la comunidad y no se detectaron CPD. A. johnsonii A2 presentó un daño bajo mientras que Rhodococcus sp. A5 no presentó daño en su ADN, sugiriendo que la comunidad bacteriana está muy bien adaptada a este ambiente altamente irradiado


Laguna Azul is an oligotrophic lake situated at 4,560 m above sea level and subject to a high level of solar radiation. Bacterioplankton community composition (BCC) was analysed by denaturing gradient gel electrophoresis and the impact of solar ultraviolet radiation was assessed by measuring cyclobutane pyrimidine dimers (CPD). Furthermore, pure cultures of Acinetobacter johnsonii A2 and Rhodococcus sp. A5 were exposed simultaneously and CPD accumulation was studied. Gel analyses generated a total of 7 sequences belonging to Alpha-proteobacteria (1 band), Beta-proteobacteria (1 band), Bacteroidetes (2 bands), Actinobacteria (1 band), and Firmicutes (1 band). DGGE profi les showed minimal changes in BCC and no CPD was detected even though a high level of damage was found in biodosimeters. A. johnsonii A2 showed low level of DNA damage while Rhodococcus sp. A5 exhibited high resistance since no CPD were detected under natural UV-B exposure, suggesting that the bacterial community is well adapted to this highly solar irradiated environment


Subject(s)
/analysis , Biotic Factors/analysis , Biota/radiation effects , Pyrimidine Dimers/analysis , Ultraviolet Rays/adverse effects , Ecosystem , Denaturing Gradient Gel Electrophoresis/methods , Biota/physiology
17.
Rev. argent. microbiol ; 46(4): 358-362, dic. 2014. ilus
Article in English | LILACS, BINACIS | ID: biblio-1171805

ABSTRACT

Laguna Azul is an oligotrophic lake situated at 4,560 m above sea level and subject to a high level of solar radiation. Bacterioplankton community composition (BCC) was analysed by denaturing gradient gel electrophoresis and the impact of solar ultraviolet radiation was assessed by measuring cyclobutane pyrimidine dimers (CPD). Furthermore, pure cultures of Acinetobacter johnsonii A2 and Rhodococcus sp. A5 were exposed simultaneously and CPD accumulation was studied. Gel analyses generated a total of 7 sequences belonging to Alpha-proteobacteria (1 band), Beta-proteobacteria (1 band), Bacteroidetes (2 bands), Actinobacteria (1 band), and Firmicutes (1 band). DGGE profiles showed minimal changes in BCC and no CPD was detected even though a high level of damage was found in biodosimeters. A. johnsonii A2 showed low level of DNA damage while Rhodococcus sp. A5 exhibited high resistance since no CPD were detected under natural UV-B exposure, suggesting that the bacterial community is well adapted to this highly solar irradiated environment.


La Laguna Azul es un ambiente oligotrófico localizado a 4560m de altura y sometido a elevados niveles de radiación solar. La composición de su comunidad bacterioplanctónica fue analizada empleando la técnica de electroforesis en gradiente desnaturalizante y se investigó el impacto de la radiación ultravioleta cuantificando los dímeros de pirimidina (CPD). Además, se expusieron simultáneamente cultivos puros de Acinetobacter johnsonii A2 y Rhodococcus sp. A5 para estudiar la acumulación de CPD. El análisis de los geles mostró siete secuencias pertenecientes a Alpha-proteobacteria (1 banda), Beta-proteobacteria (1 banda), Bacteroidetes (2 bandas), Actinobacteria (1 banda) y Firmicutes (1 banda). A lo largo del día se observaron cambios mínimos en la composición de la comunidad y no se detectaron CPD. A. johnsonii A2 presentó un daño bajo mientras que Rhodococcus sp. A5 no presentó daño en su ADN, sugiriendo que la comunidad bacteriana está muy bien adaptada a este ambiente altamente irradiado


Subject(s)
Ultraviolet Rays/adverse effects , Acinetobacter/radiation effects , Rhodococcus/radiation effects , Denaturing Gradient Gel Electrophoresis/methods , Microbiota/radiation effects , Pyrimidine Dimers/analysis , DNA/radiation effects , Lakes/microbiology , Andean Ecosystem/analysis
18.
Braz. j. microbiol ; 45(3): 977-983, July-Sept. 2014. ilus, tab
Article in English | LILACS | ID: lil-727029

ABSTRACT

Extraneous DNA interferes with PCR studies of endophytic fungi. A procedure was developed with which to evaluate the removal of extraneous DNA. Wheat (Triticum aestivum) leaves were sprayed with Saccharomyces cerevisiae and then subjected to physical and chemical surface treatments. The fungal ITS1 products were amplified from whole tissue DNA extractions. ANOVA was performed on the DNA bands representing S. cerevisiae on the agarose gel. Band profile comparisons using permutational multivariate ANOVA (PERMANOVA) and non-metric multidimensional scaling (NMDS) were performed on DGGE gel data, and band numbers were compared between treatments. Leaf surfaces were viewed under variable pressure scanning electron microscopy (VPSEM). Yeast band analysis of the agarose gel showed that there was no significant difference in the mean band DNA quantity after physical and chemical treatments, but they both differed significantly (p < 0.05) from the untreated control. PERMANOVA revealed a significant difference between all treatments (p < 0.05). The mean similarity matrix showed that the physical treatment results were more reproducible than those from the chemical treatment results. The NMDS showed that the physical treatment was the most consistent. VPSEM indicated that the physical treatment was the most effective treatment to remove surface microbes and debris. The use of molecular and microscopy methods for the post-treatment detection of yeast inoculated onto wheat leaf surfaces demonstrated the effectiveness of the surface treatment employed, and this can assist researchers in optimizing their surface sterilization techniques in DNA-based fungal endophyte studies.


Subject(s)
Endophytes/isolation & purification , Microbiological Techniques/methods , Sterilization/methods , Triticum/microbiology , Denaturing Gradient Gel Electrophoresis , DNA, Fungal/genetics , DNA, Fungal/isolation & purification , DNA, Plant/chemistry , DNA, Plant/genetics , DNA, Ribosomal Spacer/genetics , DNA, Ribosomal Spacer/isolation & purification , Microscopy, Electron, Scanning , Polymerase Chain Reaction , Plant Leaves/microbiology , Plant Leaves/ultrastructure , Surface Properties , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/isolation & purification , Saccharomyces cerevisiae/ultrastructure , Triticum/ultrastructure
19.
Article in English | IMSEAR | ID: sea-163088

ABSTRACT

Milk has good quality protein and is a unique substance in that it is consumed as fluid milk with minimal processing and also it is the raw material used to manufacture a wide variety of products. Milk is susceptible to contamination by many pathogenic microorganisms, which result in infection and threat to consumer’s health. The aim of this study was to determinate occurrence of pathogenic microorganisms in raw milk in four seasons from different locations in Egypt, the obtained counts results showed that the samples gave the lowest Total Plate Count (TPC) of 3x105cfu/ml in winter’s samples. While, the summer's sample showed the highest TPC of 5.8x107cfu/ml. E. coli count ranged from 2x102cfu/ml to 5.8x 105cfu/ml which the lowest count was noticed in winter’s samples. Staphylococcal count ranged from 2.7 x 103cfu/ml (winter sample) to1.28 x 106cfu/ml (another sample in the same season). These results indicated poor hygienic standard of raw milk from uncontrolled environments and the increased public health risk of those consuming raw milk from such uncontrolled sources and all these tests consume time but with Cultureindependent methods that are based on protocols where total DNA (or RNA) is directly extracted from the substrate it can save time. Coupled with a global analysis, these methods make it possible to study the total diversity from the bulk extract in a single step.


Subject(s)
Bacteria/analysis , Bacteria/isolation & purification , Dairying , Denaturing Gradient Gel Electrophoresis/methods , Electrophoresis/methods , Egypt , Milk/analysis , Milk/microbiology , Raw Foods/microbiology , Seasons
20.
West China Journal of Stomatology ; (6): 182-185, 2014.
Article in Chinese | WPRIM | ID: wpr-315847

ABSTRACT

<p><b>OBJECTIVE</b>To analyze the differences between the oral microbiota of monozygotic and dizygotic twins by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE).</p><p><b>METHODS</b>A total of 20 pairs of twin children were included in this study, in which 10 pairs were monozygotic (MZ) twins, and 10 pairs were dizygotic (DZ) twins. Of the 20 pairs, 10 pairs of twins had primary dentition, and 10 pairs had mixed dentition; 17 children had caries, and 23 children had no caries. Genomic DNA was extracted from saliva samples. The 16s rRNA was amplified and analyzed by PCR-DGGE. The PCR-DGGE band number and Shannon index were calculated.</p><p><b>RESULTS</b>Cluster analysis showed high similarity in the oral bacterial community seen in co-twins. However, no significant difference was seen between MZ and DZ twins. In the primary dentition, the PCR-DGGE band number and Shannon index of children with caries (11.00 +/- 1.56, 1.05 +/- 0.36) were lower than those of children without caries (14.00 +/- 2.74, 1.44 +/- 0.37) (P < 0.05). In mixed dentition, the PCR-DGGE band number and Shannon index of children with caries (11.88 +/- 4.05, 1.18 +/- 0.36) were lower than those of children without caries (14.31 +/- 5.71, 1.28 +/- 0.47), but the differences were not statistically significant (P > 0.05).</p><p><b>CONCLUSION</b>Environmental factors may have a stronger effect on the constitution of oral microbiota in children compared with genetic factors. Children without caries may have a richer microbial diversity compared with children with caries.</p>


Subject(s)
Child , Female , Humans , Male , Bacteria , Denaturing Gradient Gel Electrophoresis , Dental Caries , Microbiota , Mouth , Microbiology , Polymerase Chain Reaction , RNA, Ribosomal, 16S , Saliva , Twins, Monozygotic
SELECTION OF CITATIONS
SEARCH DETAIL